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Quasi-periodicity and bifurcation phenomena in Ising spin 
neural networks with asymmetric interactions 

S N Laughton and A C C Coolen 
Department of Physics-Theoretical Physics, University of Oxford, 1 Keble Road. Oxford 
0x1 3NP. UK 

Received 31 August 1994 

Abstract. The evolution af macroscopic order pmmeten in separable, stochastic neural 
networks. which becomes deterministic in the thermodynamic limit, c m  be completely described 
by the inverse 'temperature' 8, the embedding matrix A, and the set of initial conditions {mol. 
Using mainly the techniques of bifurcation theory we present evidence that the qualitative 
behaviour is zovemed by one relevmt eigenvalue of the nwvix A. We show that a variety 
of bifurcaiion phenomena can occur as 8 is varied. including quai-pefiodic solutions displaying 
mode locking in the disrete time case. We illusuote our results with numdcal simulations of, 
for reasons of computational intensity, the discrete time case only. 

1. Introduction 

The study of king spin models of large recurrent neural networks is essentially split into two 
sub-disciplines: the study of their static properties and the study of their dynamics. For cases 
in which the neuronal interactions are symmetric the system will approach an equilibrium 
state in which detailed balance holds. In this case equilibrium statistical-mechanical 
techniques can be used and the properties of the system in equilibrium can be derived from 
the free energy. For cases in which detailed balance does not hold, equilibrium statistical 
mechanics cannot be used, and the only route available is to study the dynamics. Obviously, 
analysis of the dynamics at the microscopic level, i.e. the states of individual neurons, is 
impossible due to the large number of them. Instead we apply a stochastic microscopic 
dynamics, and derive deterministic equations for macroscopic variables [ 1-51, This paper 
is devoted to the study of these deterministic macroscopic equations. For asymmetric 
interactions (i.e. systems without detailed balance) we expect complex behaviour, with long 
period cycles or perhaps even chaotic trajectories. We illustrate typical behaviour with 
specific examples, and show that the complex behaviour which a network exhibits can be 
understood qualitatively using bifurcation theory, which can be used to reduce a complex 
high-dimensional system to a low-dimensional set of equations containing only essential 
terms from which generic behaviour can be deduced. 

Much work has already been done on the complex behaviour of the dynamics of 
neural networks, and it has been shown that chaotic behaviour is possible in systems with 
continuous (Langevin-type) neurons [6-13]. Complex behaviour has also been found i n  
systems with discrete-valued neurons [14,15], though chaos is not possible due to the finite 
number of microscopic configurations of the system. In all these studies, however, the 
description is at the microscopic level of individual neurons. In contrast, our study aims 
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at identifying and studying complexity at the deterministic and low-dimensional level of 
order-parameter evolution. 

In the limit of high noise the only stable fixed point is the origin, representing a 
paramagnetic macroscopic state. As the noise is varied. the form of bifurcation from 
this fixed point depends solely on one relevant eigenvalue of the embedding matrix which 
determines the neuronal interactions. 

The model to be studied consists of N binary-valued neurons (Ising spins) si([). coupled 
by interactions Jij = ( I / N )  ~ ~ , , , = , ~ ~ A w u ( / .  The spins can be updated asynchronously 
or synchronously, and evolve due to a stochastic local-field alignment which we define 
by a continuous-time master equation, or a discrete-time Markov process, respectively. 
In the case of the asynchronous, continuous-time process transition rates are given by 
wi(Fis  + s) = ; ( I  - s, tanhj?hi(s)). Similarly the transition probability for the 
synchronous, discrete-time process i s  given by wi(Fis -+ s) = i(1 + si tanhj?h,(s)). 
These are chosen to lead to Gibb's and Peretto's 1161 probability distributions, respectively, 
in equilibrium. The local fields are given by h,(s) = Ji,sj, and j? plays the part of 
the inverse temperature in a spin system, parametrizing the noise. Here Fi is the spin-flip 
operator FiO(s1, . . . , s,, . . , , S N )  = O(SI, . . . , -si, .. . , S N ) .  From these microscopic rules 
a set of deterministic coupled nonlinear equations for the evolution of the macroscopic 
overlaps nip = (1/N) x,"=, $,'"si@) p E [ I , .  . . , p ] ,  strictly valid only in the thermodynamic 
limit ( N  + w )  with p <( a. can be derived for both asynchronous updating [ I ,  21 and 
synchronous updating 131 of neurons, respectively, 
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Here the angular brackets ( ) denote an average over the p unbiased random variables 
6'' E [ - I ,  I ) .  For neural networks we interpret 6,'" as bits of patterns or sequences stored 
by the network. We study ( I )  and (2) purely as a mathematical exercise, without reference to 
their interpretation regarding neural networks, although retaining the terminology associated 
with them, only returning to any physical interpretation of the results at the end. 

Recently, Lyapunov functions have been found for ( I )  and ( 2 )  for the case where 
the embedding matrix A is symmetric [17], guaranteeing approach to equilibrium. For 
asymmetric A, however, exact results are usually impossible to obtain and we must resort 
to the qualitative techniques of bifurcation theory to study how the system deviates from the 
trivial fixed point, and numerical iteration of the dynamical equations. For a review of the 
methods of bifurcation theory see [ 18. 191. We classify the bifurcations as steady state, or 
Hopf depending on the form of the relevant eigenvalue (a) of the linearized equations, and 
observe that in the latter case quasi-periodic behaviour is observed including mode-locked 
regions (a common feature of nonlinear dynamics). The mode-locked regions are known as 
Arnold tongues [20,21] and appear when the system locks into a certain cycle for a range 
of parameter values. They are related to resonances of the eigenvalue a. 

2. Bifurcation analysis 

In the following sections we carry out a bifurcation theory analysis for (1) and ( 2 ) .  We 
show that to cubic order centre-manifold reduction does not alter the expansion of the 
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dynamic equations, hence we need only carry out the reduction to normal form for the 
cases p = I and 2. since these will lead to the interesting and well understood steady sfate 
and Hopf bifucrcations, respectively. All other cases without further degeneracy in the 
critical eigenvalues will therefore, to low orders at least, behave in a similar manner. 

2.1. Linear analysis and centre-manifold reduction 

The first step to analysing the dynamics is to linearize the equations of motion (1) and (2) 
about the trivial fixed point m = 0. 

d m  
dr (3) 

A bifurcation from the trivial fixed point occurs when there is a loss of linear stability, 

_ -  - @ A m  - VI + U(m3) VI,+~ = BAm, + U(m3).  

this occurs as ,9 + + a@, where a@ is an infinitesimal increment, and 0, is given by 
1 1 ’‘ = maxRe(a(A)) ” = max Ia(A)[ 

for the continuous-time and discrete-time cases. respectively (where a(A) are the 
eigenvalues of the matrix A). Note that due to the Hartman-Grobman theorem [22], these 
results give strong bounds on the region where the only long-time solution is the trivial 
fixed point. however, these are only true locally, i.e. when the solution is already close to 
the origin. Bounds for the global stability of the trivial fixed point will be derived in the 
next section. 

We can now classify the bifurcations according to the forms of the eigenvalues a. 
Bifurcations where the relevant eigenvalue a is a real number are known as steady-state 
bifurcations. Bifurcations with a complex conjugate pair of eigenvalues are known as Hopf 
bifurcations. There is a further special case relevant to the discrete-time case only when the 
relevant eigenvalue is a negative number these are known as pitchfork or period-doubling 
bifurcations. 

We consider first the expansion of the dynamic equations ( I )  and (2) 
dm” 
dt = (l” tanhBcAmt) 

m;+, -+m“l 
= pAm,{  1 - 4@’[3 (m,AtAm,) - Z((Am,)”)’]] + 0(m5).  ( 5 )  

Now consider a matrix T such that T-IAT has the block diagonal form ($ &), where 
@AI has only critical eigenvalues-i.e. with real parts equal to one in  the continuous-time 
case, and modulus equal to one in the discrete-time case. We label the number of critical 
eigenvalues n,. We also re-label the coordinate (T-’m,)” = y; if w < n, and (T-’m,)” = 
z; if w z n,. Substituting z = h(y) into ( 5 )  can then be used to define the centre manifold. 
w e  propose a power-series expansion h(y) = 4 p V y Y y ” + & ,  Q,,Ay’y’yA +U(y4) ,  
where the constant and linear terms are missing due to the boundary conditions h(0) = 0 
and D,h(O) = 0. By comparing terms in y” we obtain a set of simultaneous equations 
determining the expansion coefficients 4 , Q  etc. Because the lowest-order terms in h(y) 
are of order yz we can see that to order y3 the equations of motion on the centre manifold 
are simply given by 
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i.e. to cubic order the forms of the equations of motion on the centre manifold are the same 
form as the fu l l  equations of motion. Therefore we carry out all the following stages of 
analysis for the  p = I and 2 cases only, since the equations of motion for p >- 2 displaying 
steady state and Hopf bifurcations, respectively, will be the same form as these, with slightly 
different numerical constants up to cubic order. 
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2.2. Normal forms for one and two patterns 

For a network trained with one pattern, the embedding matrix A is simply a number 
and hence symmmetric, the Lyapunov functions [17] therefore apply, and approach to 
equilibrium is guaranteed. We can investigate the behaviour, however, using bifurcation 
theory to discover how the fixed point deviates from the trivial fixed point. This will also 
serve as a useful introduction to the methods which will be applied to networks with more 
patterns. First the equations of motion are expanded in powers of m: 
dm 
dt (7) _ -  - ( B A  - I ) m  - f(,5'Am)3 + . ' '  m,+l 2 BAm, - f(BAm,)' + .  .. . 

We can see that there will be a steady-state bifurcation when ,3 = pc = I / A  for the 
continuous-time case, and @ = & = I / IA l  for the discrete-time case. Since the equations 
are one dimensional, we do not have to perform the centre-manifold reduction, and can at 
once move on to the normal-form reduction. In order to remove nonlinear terms of order-k 
we apply the nonlinear coordinate changes m = m' + @'(m') = m' + a;,'. The essential 
terms to be retained are those in the kernel of a particular operator L(@(m)) ,  i ( @ ( m ) )  
for continuous and discrete time, respectively [ I  SI. 

In our case the equations for L(@'(m)), i (@'(m)) (@'(m) = aimk)  are 

L($ ' (m))  = (BA - I )~ : ( I  -k)m' i ( @ ' ( m ) )  = ,8Aafm'(l - (@A)'-'). (8) 

We can see that L(@(m))  = 0 requires k = I or P A  = I ,  and i ( @ ' ( m ) )  = 0 requires 
= 1, which are exactly the conditions satisfied at criticality. Hence no nonlinear 

terms cnn be removed. Therefore, to proceed further we expand the equations of motion 
(dmldr, ml+l -in, = V ( p , m ) )  about the critical point q = 0, & = I/A, or be = I / I A l  for 
the discrete-time case giving the normal forms for A > 0 

dm 

nirfl - m, 

- dt ) = m , ( ( i - L ) - J m i ) .  

Normal forms such as these give rise to pitchfork bifurcations. We can see that fixed points 
of the motion are m, = 0 and m, = hJ3(p/,Sc - I ) ,  and that m, = 0 is stable for p/pc c 1, 
and m, = k:J3(B/pc - I )  is stable for BIB, > 1. 

= sgnA/A 
so the normal form is 

Interesting things happen when A c 0 in the discrete-time case, since then 

hence for A e 0 the system will settle into a two-cycle-oscillating between the two stable 
fixed points. For this reason a pitchfork bifurcation is often known as a period-doubling 
bifurcation. An infinite cascade of period-doubling bifurcations as succesive iterates of the 
quadratic map lose stability is responsible for the transition to chaos investigated in [Z. 241. 
This, however, will not occur in this system since the two-cycle is always stable above the 
critical point. 
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The analysis for networks trained with more than one pattern displaying steady-state 
bifurcations can easily be carried out since the centre-manifold reduction showed that, to 
cubic order, the form of equations is not altered. This is of course dependent on the relevant 
eigenvalue of the matrix A (the one with the largest modulus) being a real number. If the 
relevant eigenvalue is a complex conjugate pair, the normal form is two-dimensional, and 
the system will display a Hopf bifurcation. 

For networks trained with only two patterns there are four free parameters in the 
embedding matrix making it a relatively simple case to analyse. Steady-state bifurcations 
will occur when the relevant eigenvalue is pure real and Hopf bifurcations when the 
eigenvalue is a complex conjugate pair. 

For cases where the relevant eigenvalues form a complex conjugate pair at criticality, the 
system undergoes a Hopf bifurcation. In this case the behaviour is slightly different for the 
continuous-time case and the discrete-time case. In the discrete-time case if the eigenvalues 
exhibit resonance, i.e. if there exists n such that a: = 1. then terms are introduced into 
the normal form which cause effects such as mode locking. Nonlinear effects cause the 
system to lock into one frequency over a range of the external driving frequency. It can be 
understood in resonant sytems since if m exists then the dynamics are effectively undergoing 
a steady-state bifurcation in m,,, = F ( m , ) ,  hence the system will display a period-n cycle. 
As other parameters are varied the system can pass through several resonances. causing the 
devil's staircase structure. 

Consider a matrix A = (-I "). This has conjugate eigenvalues 1 & icc and there will 1. be a Hopf bifurcation at & = 1 in the continuous-time case, and pc = I/- in the 
discrete-time case. We proceed with the bifurcation analysis by expanding the dynamical 
equations (1) and (2), keeping only the first nonlinear term since higher-order terms will be 
negligible at the critical point, and since we can always consider higher-order terms later as 
perturbations. We now define a matrix U which diagonalizes A, and define new variables 
x ,  so that (5) for this matrix becomes 

(-I - 7 i )a3+  (-9 + 3i )a2  + (3 - 3 i ) a +  (-5 - i)  

(-3 - 9 i ) d  + (-3 - 3 i ) d  + (-3 -9i)ocf (-3 - 3i) 

+O(X'). (11) 
We now apply coordinate changes x + x + $(x) to reduce the equations to normal 

form. In order to find the non-removable terms we need to find the zero eigenvalues of 
f,(@'(m)), i(@(m)). First, transforming coordinates $k(x) = Ut@'(m) then 
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We can see that suitable basis vectors are C $ ' ( X I , X ~ )  = I x J  ), 5: k I  (xI,_x2) = ( x ) x k - j ) ,  0 

I = 0 ,  I ,  2 , .  . . , k and that the corresponding eigenvalues of L(@(z ) ) ,  L (@(z ) ) , '  k t h  
A* = y i: iw for the continuous-time case and hi = ae+iZxJh for the discrete-time case are 

or,. = (1 - k)y + iw(k - 21 
At the critical point y = 0 and G = b = 1. Zero eigenvalues in the continuous-time case 
therefore require k = 211  1, i.e. k must be odd. Therefore the eigenvectors for the irreducible 
part of the equations of motion are e:(%) = ( 't'xl'""-"'') and = (121x,x21(I.,)fl ) with 
k = 3,5, . . . , Therefore the normal form is 

) .  (14) k l  ( k-1 - iP$b(K-ZiI)  
1) 62' = ae*ib$b 1 -a e 

where aj ,  i j  are the coefficients in the equations of motion. If we write  XI,^ = reri8 then 
X I . Z / X I . Z  = i / r  'F id so in polar coordinates the equations of motion become 

m 
S = --w - C I m ( a j ) r 2 j  . (161 

In our case y = fi  - 1, w = ap and a1 = $"(aZ t 1)((1 - a )+ i ( l  +U)), so our equations 
of motion close to the critical point pc = 1 are 

( j = I  ) / = I  

m 

i = r y + Re(aj)rz' 

i = - - I r + f f i3(a2+ 1 ) ( 1  - a)r3 + 0(r5) (i 1 (17) .. ~ 

S = -a6 - ip 1 3  (a 2 + 1)(1 + a ) r2  + 0 ( r 4 )  

Notice that both equations are independent of 6'. Close to the critical point where higher- 
order terms can be omitted, the system will settle into a cycle of fixed radius (the Hopf 
radius), for a =- 1 this is given by r~ = ,/2(@/+4< - l)/(p3(az +- I)(a - I ) ) ,  with angular 
velocity approximately 6 = -ap - @/pc - 1)(1 + a) / ( l  -a). For a < 1 higher-order 
terms are needed to determine the Hopf radius. 

In the discrete-time c s e  things are a little more complicated, since the conditions for 
zero eigenvalues are that @(k - 21 zk 1) = m, where m is an integer. If $ is irrational this 
can only occur for k - 21 -+ 1 = 0, however, if is rational = p / m  then we also have 
solutions k - 21 iz 1 = nq. If this is satisfied for some value s of m then the basis vectors 
For removing the sth terms are <: = pi') FL = ($) therefore the normal form is 

(18) 

where a,, 4. a; and 5; are the coefficients for the non-resonant, and resonant terms, 
respectively. In terms of polar coordinates the equations of motion are 

For our case a = p-, 2x$b = tan-'(@), al = $93(a2 + 1)((1 -a) + i(1 +a)) 
giving equations of motion close to the critical point pc = I/- in the absence of 
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Figure 1. Hopf bifurcation diagram as a function of 
+4 for p = 3. 

1 2 3 4 
B 

strong resonances 

0 1 3  2 r,+l = r, - - zj3 (a + I ) ( ( ]  - a )  + i(ci + 1))r: + 0(r4) (21) I w 
e,+, - e, = - tan-'(ci) - arg(1 + ?j3 1 2  (a 2 + I)(([ - a )  + i(a + l))e-ivdn-'(@r: + o(r4)) . 

(22) 

This predicts a steady-state Hopf radius, close to the critical oint where higher-order term 
can be neglected given by r,? = (-(a - 1) f Y 2/p2 - (a + 1)2)/(aZ + l)312. 

Figure I shows a bifurcation diagram for the matrix 

A = ( ;  ; f l )  
a = (  1.66236 + 0.562281 

1.662 36 - 0.562 28i 

Here we expect to see a Hopf bifurcation to quasi-periodic behaviour at j3 = 1/1.75488 = 
0.569 84. 

In figure 1 we clearly see the bifurcation from trivial fixed point to quasi-periodic 
behaviour, for a network with the embedding mahix (23). The period is obviously dependent 
on p, as illustrated by the variation in density of points, and the periodic windows are clearly 
visible. This behaviour is described by (21) and (22). 

The existence of resonances will cause nonlinear SI terms in the arg term, causing 
phenomena such as mode locking, and could lead to a transition to chaos, if the 0, map 
loses invertibility. These equations are strictly only valid in a small interval around the 
critical point. As we move away from the critical point, the resonances, inititially points on 
the unit circle will grow giving Arnold tongues [ZO] .  It is this effect which produces mode 
locking. 

0.324718 
]cl[ = 1.75488 (23) ( 1.754 88 . 

1 I -1 0.324718 

3. Exact results 

Analytical results for (1) and (2) are difficult, if not impossible, to obtain due to the 
nonlinearity of the mapping and the lack of symmetries in the matrix A. Some results 
have been found for specific choices of the matrix A [17,25]. It is possible, however, to 
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derive some bounds on p and the matrix A, for which we can predict the behaviour. For 
p = 1 or 2 some exact results. valid for all p and A, can be found. 

3.1. Bounds for low and high B 
It is clear from (1) and (2) that in the limit p + 0, the network will always settle into the 
trivial fixed point m = 0. We wish to derive some rigorous bounds for p, dependent on 
the properties of the matrix A, such that the network will always settle into the trivial fixed 
point. 

Consider two vectors m and IC related by the relation m = ([tanh(pElC))E. Since tanh 
is an odd function and the t ’ s  are independent, unbiased random variables with values i l ,  
we can write 
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Now am’/akg > 0, and if k@ = 0 then mfi = 0 (the e’s are randomly distributed over 
{- l ,+l]) .  From this we can see that sgn[mPl = sgn[k@] and Imfil = (tanh(plkfl1 + 
@~: ,# ,$pkP) )  Since the e’s are randomly * l ,  we can replace in any expression with -e. Therefore 

/mPI = 1 t a n h ~ l k P l + p C ~ p I ; p ) + f ( t a n h p l k p / - p C ~ P k P ) .  (25)  

This is a function of the general form f ( lx l+ y )  + f ( l x l -  y ) .  which equals f (1x1 + lyl) + 
f ( l x l  - l y l ) .  Therefore 

( P#P P#P 

the second term is always positive, hence I m p ]  < tanh(plkfi1) < @lk”l and mz < pzIC2. 

dynamics ( 1 )  then we have 
Now if we let IC + A m ,  and m --t d m / d i  + m ,  where m solves the continuous-time 

(m + F)’ = mz + - dm2 + (F)’ < p 2 m A t A m  
dr 

Hence for pz c I/cu,,(AfA) then dm2/dt  .< 0 and as a result lim,-m m = 0 (where 
a,,(AtA) is the largest eigenvalue of AtA). 

Similarly in the discrete-time case (2) we choose m = m,+l and k = Am,, so 

Therefore for p2 c l/cu-(AiA) then m:+,/m: c 1 hence Iiml+- m, = 0. 
Notice these are weaker bounds than the ones given by considering the linearization of 

the equations of motion. They are, however, global bounds, rather than bounds only valid 
in the vicinity of the origin. 

In the limit p + cc we also expect to be able to tell something about the dynamics 
since 
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In the continuous-time case this leads to sharp corners in the trajectories, when E A m  
changes sign. In the discrete-time case, since sgn(cAm,) only has two possible values * I ,  
and 6 has 2 P  possibilities, we expect cycles of maximum period 2 p .  However, the sgn 
function is the limit of a tanh, so there it has a third possible value 0, when EAm, = 0. 
This admits a further 2 p  possibilities, therefore in the limit f3 + w we expect a limit cycle 
with maximum period 2 P + ’ .  

3.2. One and two patterns 

The dynamics of a network trained with only one pattern (i.e. p = 1) is given by one 
autonomous nonlinear differential, or difference equation 

(30) 
dm 
- =  tanh(f3Am) - m 
dt 

m,+l = tanh(,f?Am,). 

This is a special case of the general equations (1) and (2 ) ,  for which A is simply a number, 
therefore it is necessarily symmetric, and only provides an extra scaling for ,f?. The Lyapunov 
functions in [ 171 apply, and the system is guaranteed to reach an equilibrium configuration. 
Steady-state bifurcations will occur from the trivial fixed points to non-trivial fixed points 
in the continuous-time case, and to fixed points or period two-cycles (for A c 0) in the 
case of discrete-time dynamics. 

A network trained with two patterns (i.e. p = 2) is the simplest we expect to display 
interesting behaviour. It can be analysed directly, since there are a reasonably small number 
of free parameters, and from these results we hope to infer general statements networks with 
larger numbers of patterns. 

Again we consider the matrix A = (-: ;) since this is guaranteed to have a complex 
conjugate pair of eigenvalues, though the extension of the following work to general A is 
not difficult. We will only consider the difference equation, since the differential equation 
cannot display the property of mode locking: 

(31) 

We now change to polar coordinates, the natural coordinate frame in which to consider 
Hopf bifurcations. Putting (mi ,  m’) = r(cos0, sin8) gives 

(32) 
tanh arrt - tanh brri 
tanhair, + tanh brrt 

I r,’+] = tanh’ a,r, + 7 tanh’ birr S,+i = tan-’ 

with the abbreviations a, = f3((1 - a ) c o s &  + (a + l)sinO,) and 6, = f3((u + l)cos6’, + 
(a - 1 )  sin&). 

Close to the bifurcation point we expect the radius of the curve to be small, if we expand 
r:+, in terms of r, we find 

(33) 

where a’ + b2 is independent of O,, so angular dependence only enters throught the second, 
and higher-order terms. As we move away from the bifurcation point, and higher terms need 
to be taken into account, the angular dependence will become stronger, and higher-order 
0, terms will appear. This will have the effect of making the trajectory more convoluted 
and less circular as we move away from the bifurcation point, and higher-order angular 
harmonics become important (figure 2). 

r;+, N (a’ + b’)r: - $(a4 + b4)rp + O($) 
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Figure 2. r,+l against E, for ,E = I and f l  = 3 showing the increasing angular dependence of 
r, xs we move away from he bifurcation point. 
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F i y m  3. E,+, against E, for ,E = I and 3,0 = 0.6 and 1.4 obtained from iterating the dynamics 
directly. Away from the bifurcation point lk maps become stair-like. 

If we examine what happens to Ortl as e, is varied, in the limit p + 00, with a f I 
we see that the tanh functions become sgn functions, so 

(34) 
Hence the function is step like with values nn/2, changing when tan 0 = (a - I ) /@ + 1) 
or tan0 = (a + I ) /@ - 1). 

Therefore as we increase p from the bifurcation point. we expect the return map of &+I  

against 0, to go from a straight, diagonal line, to a series of four rounded steps, to a series 
of four sharp steps (figure 3). As p is increased the points visited by the dynamics tend to 
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be only at the corners of the steps. At exactly @ = 00, the function becomes non-invertible. 
This results in Ccycles for 01 =- 1, fixed points for 01 c 1, and 8-cycles for 01 = 1. At 
exactly @ = 00 and a! = 1, the return map only just touches the diagonal. The behaviour is 
therefore indeterminate, and depends on the order in which the limts 0 + m and a! + 0 
are taken. 

4. Stability analysis and Arnold tongues 

In this section we consider, in detail, the different periodic orbits generated by the nonlinear 
mappings. If a complex pair of eigenvalues of the linearized equations of motion leading 
to a Hopf bifurcation are the nth root of unity, then the behaviour close to the trivial fixed 
point can be considered as a steady-state bifurcation in m,+, = f(mc). These resonances 
cause mode locking. At the bifurcation point, non-resonant eigenvalues form points of zero 
measure on the unit circle forming the range of eigenvalues in  the complex plane. As we 
move away from the bifurcation point these points grow, forming Arnold tongues-finite 
regions in parameter space where the system locks into a given period orbit. As these 
tongues grow (as some parameter is varied) they may fill all space, leave some space for 
quasi-periodic orbits or even overlap, causing chaos. These tongues are caused by nonlinear 
angular terms which become important as we move away from the bifurcation point. This 
section explores how the tongues grow as parameters are varied in our system, and how 
the stability of various periodic orbits can he calculated. We use the p = 2 system with 
the matrix ()e 7 )  as our prototype model, since it has only two parameters to adjust. We 
present numerical evidence that the p = 3 case also displays similar behaviour, however. 

Figure 4 shows the winding number (i.e. average rotation per iteration) over a range of 
p for 0.1 4 a! 4 1.9 in steps of 0.1. 

Networks with 01 c 1 tend towards w = 0 as p increases and a! > 1 tend towards 
w = 0.25 as p increases. At exactly a! = 1, w = 0.125 is a stable orbit for all p.  Also 
notice several regions of mode locking where w is an either integer or a rational fraction 
corresponding to periodic orbits. We can gain much insight into the problem by considering 
the equations of motion at ,B = 00, then considering how the behaviour will change for 

Figure 4. Winding number as a function of p 
for E from 0. I at the bottom to 1.9 01 the top. in 

B steps of 0.1. 
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Fiyrc 5. Basin boundaries and trajectories in the m y m i  plane, for c1 < I .  c1 = I and U > 1. 
The dotted lines represent the basin boundaries. and the full circles represent points which are 
visited by the dynomics. The shaded dots represent points on lhe cycle which only appear when 
the basin boundaries intersect the axes. The .mows show how points in each region are mapped 
to points on the cycle. 

finite p’. For f l  = 00 the tanh functions become sgn functions, and the equations of motion 
become 

(35) 

m,+l= -( ) s p n  ((1 - a)mt + (1 + a!)ml) + - 

Since the mapping now contains sgn functions, any point within a certain boundary will be 
mapped to a single point. Basin boundaries are given by ml/m:! = (a! + l)/(a - 1) and 
ml/m? = ( I  - a ) / ( l  +a). The behaviour of points exactly on a boundary is marginal, 
they will first be mapped into a basin, and then onto an appropriate point. 

We can investigate the behaviour by considering what happens to the basin boundaries as 
a is varied, as depicted in figure 5. Starting at 01 = 0 the basin boundaries are the diagonals 
ml = &m~.  Consider the upper quadrant, here all points are mapped to (0, I), hence there 
are four equivalent fixed points. since all points within each quadrant are mapped to a point 
within that quadrant. As 01 is increased the boundary lines rotate anti-clockwise. At o( = 1 
the basin boundaries intersect the axis, and hence also the fixed points. Here the behaviour 
changes, since the points to which the dynamics maps are on the boundaries and hence 
the behaviours are marginal. The points on the axis will, in fact, be mapped clockwise to 
the points (f 4, hi), The trajectory is now in another basin, and will again be mapped 
clockwise to a point on the next axis. Hence an 8-cycle is established. For ,9 = 00 this 
only occurs for a! = 1. As a! is increased further past 1, the boundaries continue to rotate 
anti-clockwise. once they have passed the axes, however, the points mapped to are no longer 
in the same quadrant, therefore a 4-cycle results. 

As ,9 is decreased the points visited by the dynamics deviate slightly from the axes. 
Behaviour need not be restricted to fixed points, 4-cycles and 8-cycles, but also a wealth 
of integer-period cycles and quasi-periodic cycles may appear. The basin boundaries now 
become meaningless, and the type of behaviour must be determined by a stability analysis, 
using the Jacobian of the mapping (amp+,/amf). If we consider some finite value of ,9 
and increase 01 from zero, we go  from fixed points through quasi-periodic and other period 
cycles, to an %cycle, then through another region of quasi-periodic and periodic cycles. to 
a 4-cycle. 

For 01 = 1 - E ,  the fixed points are of the form (1 - 6, sgn(c)d) and its analogues close 

sgn ((1 + 01)ml+ (-1 f 01)mz) . 1 1  
2 1  
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to the other axes, for large p.  where S is a function of e and @ ,  As j3 increases 6 decreases 
to zero. For E close to zero, there are not only points close to the axes visited by the 
dynamics, but also points in between. For moderate p these are close to (f $,it), but 
as p is increased these become closer to the axes, so that points visited by the dynamics 
are like ( 1  - &,SI) and ( I  - 82 ,  -62). 61 and 62 decrease as f i  is increased, and at j3 = 00 
these two points merge on the axis, and other points are created at ( f 1, if). 

We commence the stability analysis by calculating the Jacobian of the mapping using 
(31). In principle from this we can calculate the critical stability line of any cycle in P-E-  
space. In general though, this is difficult, apart from certain cycles for which symmetries 
simplify the problem. 

4.1, Fixed points, 4-c)'cles and &cycler 

First we consider the case of 01 = 1 - E giving rise to fixed points. Since all 
fixed points are equivalent, we take the one near (l,O), and use the postulated form 
( 1  - 6 + O(S2), -6 + O(Sz)), this implies that tanhB ((2 - E)ml - sm2) 2 1 + O(6') 
and tanh ,b'(cm( + (2  - c)mz)  2 1 - 26 + O(S2). Using these results and keeping only 
linear terms in S the Jacobian becomes 2pS(: :I:). This assumes that p is large so that 
S << 1. Now critical stability occurs when the maximum absolute value of any eigenvalue 
of the Jacobian is 1,  which is given by 466 = 1. In order to obtain a value for 6 in terms of 
p and E only expand tanhp ( ~ m l  i- (2 - c ) q )  around the fixed point ( I  -8, -S), assuming 
6 c E ,  and that ps is large giving 

1 - tanhoe 
2( 1 - p (1 - tanh* B E ) )  6 -  

Since the numerator is neccesarily positive, and 6 is positive, a restriction is placed on the 
range of @ and t for which this expression is valid: E > 1/fi tanh-'(l - l ip) .  as well as 
the condition for the expansion to be valid pS << 1, 6 i E ,  and p r  >> I.. Hence 

Z,9( 1 - tanh B E )  
- 1 = o  

(1 - p ( l  -tanh2BE)) 
(37) 

defines a relationship between ,9 and E ,  valid in the high-p limit giving the stability boundary 
of the fixed point. This equation must be solved numerically. 

If we let @ g o  to infinity along the line defined by (37) we can determine the asymptotic 
form of the line defining the stability in this limit. Writing tanhx 1 - 2e-b for x + 00 

this gives an equation Sfie-*@€ -4Be-"' = 1. Assuming that e-'@' is negligible compared 
with 

A similar relationship can be derived for the 4-cycle, with (Y = I + E ,  using similar 
arguments and the relations between succesive points on the cycle. Since all points on the 
4-cycle are equivalent the Jacobian need only be calculated at one point. The Jacobian at 
(-8, 1 - 8) is 2pS(?l:< Je) ,  with critical stability again given by 4BS = 1. In order to 
calculate S we expand the mapping at the transition (-6, 1 - 6) + ( I  - 6 . 6 )  giving 

this gives a form like E - (log8@)/2g, so a - I - (logSp)/Z@. 

1 - tanh BE 
6= 

2(1 - @ ( E +  1)(1 - t anh 'p~) )  

where again we have assumed pS << 1, 6 < E and ,BE >> 1. The equation governing the 
stability for the 4-cycle, for large p is then 

2@(1 - tanhpc) - 1 = o .  
( 1  - p ( ~  + I ) (  1 - tanh' BE)) (39) 



8024 S N Laughton and A C C Coolen 

We can derive the asymptotic functional form, in the same way as for the fixed points: 
E - (log48(2+ .5))/2,B, so a - 1 + (log8p)/28. 

is slightly more complex, since the 8-cycle contains two set of non-equivalent points, hence 
two Jacobians and two 6's must be calculated, 

First we take the case 01 = 1 + E ,  we consider the (1 - 61, -6 )  + (62. -1 + 62) -+ 
(-a1, -1 + 61) part of the trajectory. The Jacobians at the first two points are 

We can calculate the stability line for the 8-cycle in a similar way, though in this case i t  

J+(62, - 1  + 62) = 2p61 ( -", -", ) + up:) 
The critical stability line is therefore given by the eigenvalue of their product with the 
largest magnitude: 16@2816~(~  + 1)' = 1. We calculate 61 and 82 as before by expanding 
the dynamic equations, with << 1 though in contrast to before 82 > E ,  and E > 8,. The 
equations for 61 and 62 are then 

J1 =e-2B(zs1-f)62= ;(I -tanh,%)+p61(1 -tanh',E~). (41) 

From the equations for 61 and 82 and the critical stability relation it is possible to derive an 
equation involving p and E only, determining the critical stability of the 8-cycle for 01 > 1 
and Large 6. 

If we use the critical stability equation to create a quadratic form for 82, we can again 
determine the asymptotic Limit for the line, and find E - (Iog2p)lp - (log log I6@')/,4 

Similarlyforol= 1 - 6  westudythe( l -61 ,61) -+  ( 1 - 8 z , - 6 z ) ~ ( 8 , , - 1 + 6 l ) p a r t  
SO 01 - 1 + (10gZp)/p - (log log 16,E2)/p. 

of the trajectory, The Jacobians at the first two points are 

The critical stability line is now given by 16,B28162 = 1. In order to calculate 61 and 62 we 
again assume that @I << 1 and 62 =- E ,  giving the following expressions: 
st = ,-28(28?-~) 82 = f ( l  - tanhpc) + p61(~ - 1)(1 - tanh2,EE). (43) 
These again form a set of equations to be solved numerically giving the critical stability of 
the 8-cycle region for large p.  

Again the asymptotic form of the solution can be found 6 - (log4B )/ 20 - 
(loglog16p2)/2p a n d a -  1 - ( Iog4@)/2p+ (loglog16p2)/2@. 

4.2. Mode-locked regions 

Using this information we can construct a phase diagram for the network, showing the 
boundaries of stability of the different period cycles. The natural coordinates to use are 
TIT,  and l /Tc,  where T = 1/p and T, = -/i%? is the temperature at which the system 
bifurcates from the trivial fixed point. Figure 6 shows the phase diagram, with the dots 
calculated from the above stability analysis, and the lines taken between critical stability 
points from iterations of the mappings directly. The markers are from calculations of the 
asymptotic form. 
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F i g m  6. Phase diagnm showing the different 
periodic trajectories. The number represents the 
period in the particulaf region. The dots mark 
points calculated from the preceding stability 
mdysis; the triangles are points taken from the 
6 -* M asymptotic form of these equations; md 
the straight Lines join points taken from direct 
iteration of the dynamic equations. The lines are 
meant as a guide between points only. Only a 

.7 .75 resvicted number of periodic regions is shown in 
order not to crowd the diagram. 1/T. 

The fit is only qualitative for moderate T ,  however, for small T (j3 4 00) all three 
sets of data converge. In between the regions shown on the diagram are other regions 
corresponding to periodic orbits, which have not been shown in order that the diagram be 
comprehensible. In between these mode-locked regions are regions of quasi-periodicity, 
which shrink as T + 0. 

We expect similar behaviour to occur in networks trained with any  number of patterns, 
since the normal forms are the same up to cubic order. Figure 7 shows the winding number 
and llperiod for a network trained with three patterns, using the matrix (23), with an arbitary 
linear combination (ml + m2 and my) as the two coordinates. The winding number shows 
similar behaviour to the p = 2 case with many mode-locked steps, showing that a Hopf 
bifurcation leads to motion with only two free variables. The period is measured to be the 
number of steps required to return arbitarily close to the starting point. We see that in the 
mode-locked steps the winding number and Uperiod are the same. This is as we would 
expect. Out of the mode-locked regions. i.e. in the quasi-periodic regime, the period is 
higher than the winding number would suggets, reflecting the fact that the period must be 
integer. 

In principle, we could construct a phase diagram for networks with arbitary matrix A. 
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Figure 7. Winding number and Ilpcriod for p = 3. 

Since there are p z  free parameters the phase diagram would need to be in p2-dimensional 
space, As we varied any one of the parameters, keeping ,3 (the overall scaling factor) fixed, 
we would go through a range of periodic and quasi-periodic orbits. The precise shape of the 
various regions would depend on the numerical values in the embedding matrix A. There 
would, however, be certain regions which we can readily identify. 

(i) The fixed-point region corresponding to symmetry of A when all eigenvalues are pure 

(ii) The 4-cycle region corresponding to complete asymmetry of A when all eigenvalues 

(iii) The ZP+'-cycle region which for 6 = CO corresponds to the basin boundaries co- 

real. 

are pure imaginary. 

inciding with the axes. 

5. Conclusion 

In this paper we have studied the qualitative behaviour of stochastic king spin neural 
networks, with separable interactions. The macroscopic variables (pattern overlaps) which 
in the limit p < a, N + w (where p is the number of patterns and N is the number of 
neurons) evolve due to the deterministic laws (1) and (2) for asynchronous and synchronous 
updating of the neurons, respectively, show a variety of bifurcation phenomena if the noise 
(parametrized by an inverse temperature, ,3) and the eigenvalues of the embedding matrix A 
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are varied. We have shown that the qualitative behaviour of such types of neural networks 
can be analysed using the methods of bifurcation theory. These methods can be used to 
predict when and how the system will move away from the trivial fixed point and we have 
shown that the type of bifurcation is dependent only on the form of the eigenvalue of A with 
the largest real part (in the continuous-time case) or the largest modulus (in the discrete- 
time case). Away from the critical point non-trivial and quasi-periodic cycles appear, due 
to the nonlinear angular terms becoming important. These are the Arnold tongues, and the 
stability of these cycles can be calculated in the large-@ limit. Hence a phase diagram may 
be constructed in the p z  dimensions of the free parameters of the embedding matrix A. 
This phase diagram shows how the regions where different periodic orbits are stable are 
affected by changes to the elements in A. In between the mode-locked periodic phases are 
regions of quasi-periodic behaviour where the period of the orbit is irrational, hence the 
system returns close to its starting point, but never coincides with it. 

We have supported our analysis with numerical simulations which illustrate the types of 
behaviour encountered. In this way we have shown the condition neccesary for a recursive 
neural network of this separable type to show the properties of 
(i) associative memory is h* E R; 
(ii) sequence retrieval is h" E P t 1 
where A" is the eigenvalue of A with the largest real part in the continuous-time case, or the 
largest modulus in the discrete-time case. We have shown that in the case of sequence re- 
trieval the period depends both on the eigenvalues of the embedding matrix A and the noise, 
paramehized by 8. Hence for a network with a given amount of internal noise the eigenval- 
ues of the embedding matrix A must be tuned in order to be able to retrieve a given sequence. 
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